Packaging Converters are Digging Digital

From a new approach to metallization to nanographic printing to digital laser scoring and cutting of printed corrugated sheet, converters agree that digital is the future.

An impressive example of what THIMM has been able to produce thanks to its digital capabilities is this package for a Danone Activia campaign executed in the Czech Republic.
An impressive example of what THIMM has been able to produce thanks to its digital capabilities is this package for a Danone Activia campaign executed in the Czech Republic.

Three digital technologies with huge potential in the packaging arena have recently gone from the development stage to the fully commercial or beta-site stage. Interestingly enough, each of these technologies occupies a different place in the package converting continuum. From Actega Metal Print GmbH  comes EcoLeaf, a method of embellishing packaging substrates by way of micro-pigments. From Komori  comes the Impremia NS40, a 40-in. sheet-fed Nanographic Printing® system. And from Highcon comes the Beam 2C, which brings to corrugated packaging the power of digital laser scoring and cutting that has been quietly transforming the folding carton sector since drupa 2016.

The single-wall E-flute corrugated was printed on a Durst RHO 1012 and then taken to the Highcon Beam 2C for digital laser scoring and cutting.The single-wall E-flute corrugated was printed on a Durst RHO 1012 and then taken to the Highcon Beam 2C for digital laser scoring and cutting.Let’s begin with the Beam 2C, which would have been the star of the Highcon booth at drupa had drupa not been postponed due to COVID-19. Digital finishing of corrugated sheet, says Highcon CEO Shlomo Nimrodi, is something that up to about a year ago simply did not exist. “What we’ve been able to accomplish in just 12 months is, in my opinion, phenomenal,” he tells us.

Like the digital laser scoring and cutting equipment for folding cartons that put Highcon on the map in the first place, the Beam 2C replaces the expensive and slow conventional die-making and setup process with a digital technology that delivers fast speed to market, design flexibility, and the ability to perform a wide range of applications in-house. The key to the Highcon technology is DART: Digital Adhesive Rule Technology. Digital creasing data is uploaded from a DXF file to the Beam 2C system. Proprietary software translates the data and sends it to a special dispensing unit that contains an unnamed polymer. This polymer is released onto a PET jacket mounted on a hard metal upper cylinder. In essence, the dispensing unit extrudes onto the PET jacket the rules needed to make the case’s creases. The pattern it extrudes is dictated by the digital data uploaded from the DXF file. As soon as the polymer rules are laid down, they’re hardened by exposure to UV light. Directly beneath the upper cylinder and its PET jacket is a lower cylinder that has a soft, silicone-like blanket mounted on it. All that remains is to send the printed corrugated sheet through the two cylinders. As the upper cylinder with its UV-hardened rules presses into the soft surface of the lower cylinder, the corrugated board in between is creased by the rules. Once the required number of sheets has been creased, the PET jacket is removed from the upper cylinder and a fresh one takes its place so that a completely different job can be downloaded. This video (pwgo.to/5553) demonstrates the rules of polymer being printed onto the cylinder with PET jacket.

As for cutting the individual cases from the sheet, it’s done within the Beam 2C system immediately after creasing. An array of high-powered CO2 lasers combine with scanners and advanced optics to perform whatever cutting design was spelled out digitally in the uploaded file.

According to Highcon, the Beam 2C is capable of handling C-flute and double-wall corrugated at up to 4,000 sheets/hr, and sheet width can be up to 29 in. x 42 in. Among the first to install the Beam 2C is THIMM. This leading solutions provider for the packaging and display of consumer goods installed and commissioned the Beam 2C in its production plant in Vsetaty in the Czech Republic. It further enhances the plant’s capabilities, which already includes a high level of automation and state-of-the-art digital printing capabilities on equipment from HP Indigo and Durst.

“Our objective is always to deliver the best solution to the customer,” says Michael Weber, Head of Corporate Marketing at THIMM. “Alongside digital printing, this digital laser cutting technology for the digital finishing of corrugated represents a logical expansion of our capacities. We are convinced that laser-cut packaging and displays are relevant to many different sectors and we are currently working closely with our customers in the preparation of new packaging and presentation options to generate a competitive advantage for them.”

Digital laser technology lets THIMM meet the growing demand from brand owners who no longer accept a one-pack-suits-all approach and want customized variants instead. THIMM is able to respond to this trend because digital laser cutting requires no cutting tools. This shortens the production process and makes it practical to produce small numbers of corrugated cases. Not to mention that digital laser cutting can produce some very sophisticated cutouts that are impossible for conventional cutting dies to handle.

Highcon’s Nimrodi says his firm’s expansion from equipment designed for finishing paperboard cartons to equipment that finishes corrugated had three key drivers behind it. First, anywhere between 30 and 50 digital presses are being installed in the plants of corrugated suppliers every year. So it only makes sense that these companies would also want to go from analog to digital in corrugated finishing equipment. “If these companies are spending three or four million dollars on a digital press to satisfy their customers’ speed-to-market demands, why would they want to put those printed sheets into a production queue until conventional creasing and die-cutting equipment is ready to finish them? Where is the efficiency in that approach?” asks Nimrodi.

A second driver is that Highcon isn’t just about selling equipment, it’s also about selling consumables like the proprietary polymer used in its DART technology. By expanding into corrugated finishing, the firm positions itself to sell more of this polymer.

As for the third driver, it’s actually something that Highcon only began to fully appreciate once customers began to finish significant amounts of corrugated on the Beam 2C. What they discovered is that unlike conventional finishing technology, which crushes or compresses the corrugated sheet, digital laser cutting is a non-crush method. “For example,” says Nimrodi, “if you need a corrugated case with a three-millimeter thickness, you have to start out with four millimeters if you are relying on conventional finishing technology. But by going digital and laser, you can start out with three-millimeter board. That means a savings in material costs.”

Go to pwgo.to/5546 for a brief video of the Beam 2C operating at the THIMM plant.

The Impremia NS40 40-in. sheet-fed Nanographic Printing System from Komori combines Komori’s experience in sheet-transfer systems with the NanoInk technology invented by Landa.The Impremia NS40 40-in. sheet-fed Nanographic Printing System from Komori combines Komori’s experience in sheet-transfer systems with the NanoInk technology invented by Landa.Komori’s Impremia NS40
Moving now to the other two notable firsts in the digital print for packaging scene, it’s worth mentioning that Benny Landa’s entrepreneurial fingerprints are on both of them. Sometimes called the “father of commercial digital printing,” Landa is the one who launched Indigo Digital Press in 1977, a technology he sold to Hewlett-Packard in 2002. He then went on to launch The Landa Group for nanotechnology research, an organization that brought not only nanographic printing into existence but Nano-Metallography, as well. We’ll get to Nano-Metallography shortly. But first we turn to Nanographic printing, specifically to the Impremia NS40, the 40-inch Sheetfed Nanographic Printing® System from Komori. Described by Komori as a “technical exhibit” at drupa 2016, it was slated for a proper sales launch at drupa 2020. It uses Nanography® technology licensed from Landa, and its development incorporated the know-how and technologies that Komori has cultivated over a long period of time through its offset printing business.

Last October, Komori announced the world’s first beta site for the Impremia NS40: Shinwa Factory of Japan. “I am extremely grateful that Komori chose us to conduct the field testing for the Impremia NS40,” says Yasunari Yamazaki, Representative Director of Shinwa Factory. “One of our requests was the support for small-lot production of packages. About 40% of jobs of the total volume of packages that we manufacture are 2,000 sheets or less, and there is a limit to one day’s production in terms of setup and efficiency. We can expect that the production volume of the Impremia NS40, with a print speed of 6,500 sheets per hour and an extremely short changeover time, will far exceed our current offset printing capabilities.”

Researched List: Engineering Services Firms
Looking for engineering services? Our curated list features 100+ companies specializing in civil, process, structural, and electrical engineering. Many also offer construction, design, and architecture services. Download to access company names, markets served, key services, contact information, and more!
Download Now
Researched List: Engineering Services Firms
Pharmaceutical Innovations Report
Discover the latest breakthrough packaging technologies shaping the pharmaceutical sector. This report dives into cutting-edge innovations, from smart containers that enhance patient safety to eco-friendly materials poised to transform the industry’s sustainability practices. All from PACK EXPO. Learn how forward-thinking strategies are driving efficiency and redefining what’s possible in pharma packaging.
Learn More
Pharmaceutical Innovations Report