Decentralized motion, driven by intelligence

Power conversion and control/communication issues drive the choice for distributed motion control. But is this popular approach right for all machine builders and every application?

Distributed motion in action, courtesy of Siemens
Distributed motion in action, courtesy of Siemens

More flexibility, greater efficiency, less cost—those are what manufacturers say they want from people like Mike Grinager, vice president of technology at Brenton Engineering. The message was received loud and clear at Brenton, a builder of packaging and palletizing equipment in Alexandria, Minn. That’s why its newest line of side-loading case packers uses a decentralized, or distributed, approach to motion control—to take advantage of the intelligence and engineering found in today’s drives.

The result was a faster and simpler all-servo design. “We did everything we could to reduce the complexity of the machine,” says Grinager. “We took out the pneumatics, which was the most expensive aspect of the machine. And our engineers removed more than 200 moving parts, reducing costs by one-third.”

Moreover, the integrated servo motor and drive that made the design possible is half the size of a conventional servo system, which consists of a separate servo drive and motor. Consequently, the combined unit requires less space than even the smallest motors that Brenton engineers had used before.

Each Bosch Rexroth IndraDrive Mi integrated servomotor/drive-amplifier unit mounts directly on the machine, outside the control cabinet. Because the units have been hardened and designed to dissipate heat outside the control cabinet, not only are the control cabinets 25 percent smaller, but they also consume fewer filters and 25 percent less energy for air conditioning. The motor-drive platform works with Sercos distributed I/O, an IndraMotion MLC motion logic controller and the IndraControl VEP40 human machine interface (HMI).

The distributed approach also permitted the Brenton engineering staff to eliminate clutter on the new case packer by taking advantage of new hybrid cables. Just one cable now runs from the new machine’s electrical cabinet, daisy-chained to each motor-and-drive unit to provide both power and communications. The hybrid cables reduced the cabling on each machine by about 80 percent, says Grinager.

“Our machine has a cleaner appearance without all the wires running to and from the electrical cabinet,” Grinager says. “Because of the small integrated motor-drive units and fewer cables, the machine has a walk-in design that allows easy access for the operator to clean and maintain it.”

Besides reducing the overall footprint of the machine, another advantage of decentralizing is less cost, usually about a third less, according to Abdulilah Alzayyat, product manager at Bosch Rexroth. These savings come from less cabling and less energy consumption. Not only is less cooling required in the cabinet, but modularity and daisy-chaining also permit recouping energy losses as the motors decelerate. “If one axis is breaking, you can use that energy to power a second axis that is accelerating,” says Alzayyat. 

Other advanced features available are multi-Ethernet-based master communications, additional distributed field-line I/O, IEC 61131-3-compliant motion logic in the drive, and safety zonestechnology. “Our distributed motion controllers have optional safety onboard,” notes Alzayyat. “So, you can either have safety I/Os going directly to each axis to create separate safety zones, or you can have one central safety zone that includes the complete system.” One example: establishing a number of safety zones in a packaging machine. With these zones in place, an operator can stop a section independently of the others to clear a misfeed or perform some simple maintenance while the rest of the machine continues to run.

Two questions, not one
The question of whether to decentralize is not always a straightforward one, especially in sophisticated motion-control applications. The reason is that these applications often require a high degree of synchronization, which means that, besides power conversion, control is also an important aspect of the calculus. Consequently, the question about whether to centralize or distribute is actually two questions—one about power conversion, and the other about control and communication.

In both cases, engineers must weigh both the advantages and limitations of distributing and centralizing. When it comes to the drives, a smaller electronics cabinet and the savings on cooling and cabling costs are certainly powerful motivators to decentralize. “But you have to keep in mind that your electronics are now subject to the same vibration and other ambient conditions as the motor,” notes Craig Nelson, a product manager at Siemens Industry Inc. in Norcross, Ga. “Your electronic components must not only have a higher industrial-protection rating but also be of a higher quality.”

Conveying Innovations Report
Editors report on distinguishing characteristics that define each new product and collected video demonstrating the equipment or materials as displayed at the show. This topical report, winnowed from nearly 300 PACK EXPO collective booth visits, represents a categorized, organized account of individual items that were selected based on whether they were deemed to be both new, and truly innovative, based on decades of combined editorial experience in experiencing and evaluating PACK EXPO products.
Take me there
Conveying Innovations Report
Coding, Marking, and Labeling Innovations Report
Explore our editor-curated report featuring cutting-edge coding, labeling, and RFID innovations from PACK EXPO 2024. Discover high-speed digital printing, sustainable label materials, automated labeling systems, and advanced traceability solutions that are transforming packaging operations across industries.
Access Report
Coding, Marking, and Labeling Innovations Report